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Abstract 
The search for optimal time intervals for satellite operations performance is based on 

verifying specific conditions of a geometric or physical nature. Several conditions are combined in a 

situational problem. To be able to solve different situational problems, it is necessary to develop 

program codes for verifying different situational conditions in advance. Two situational conditions for 

determining if the satellite is in the sunlit zone or the umbra based on the conical models of the earth's 

shadow are presented. Necessary (but not sufficient) conditions are introduced to locate the satellite in 

the umbra or the sunlit zone, respectively. These conditions simplify the calculations and increase the 

computational efficiency for a large part of the satellite orbit. Problems with one or more conditions 

are solved by a developed parallel solver for situational analysis. Conditions checking the position of 

a satellite relative to the Earth's shadow can be combined with other situational conditions. A model of 

description of situational conditions is shown. 

 

 
Introduction 
 

Current trends in the development of satellite technologies lead, on the one 

hand, to the use of smaller satellites and, on the other hand, to multi-satellite missions 

instead of large multi-purpose satellites [1, 2] The process of space missions’ 

analysis and design is related to the clarification and optimization of many and 

different parameters linked to scientific instruments, satellite subsystems, orbital 

parameters or templates of multi-satellite systems. 

Computer simulations are playing an increasing role at all stages of 

preparation and operational implementation of multi-satellite missions. The 

application of parallel algorithms and calculations is crucial in solving large-scale 

problems involving hundreds and thousands of satellites. 

An important part of the space missions’ analysis is the so-called situational 

analysis. The situational analysis deals with the determination of optimal time 
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intervals suitable for the execution of satellite operations, depending on various 

geometric and physical conditions. This type of analysis is applied to different stages 

of mission preparation- starting with the conceptual study and preliminary analysis, 

going through mission definition, design and development, and finishing with 

implementation. The determination of the initial and final moments of the passage 

of a satellite through the shadow of the Earth as well as through the sunlit zone has 

wide practical applications. The evaluation of the energy produced by solar panels 

and its use in executing various operations is an example of such an application. 

These moments are necessary to perform measurements in the Earth's shadow or the 

illuminated part of a satellite's orbit. 

Wertz and Larson [3] emphasize that mission analysis algorithms must be 

simple and effective enough to allow multiple runs, collect statistical data, and 

explore various scenarios and design options. Developing effective methods and 

computer programs for situational analysis is very important when many problems 

need to be solved, each involving more than one situation. 

Algorithms and calculation tools for space mission analysis and design are 

under development at the Space Research and Technology Institute at the Bulgarian 

Academy of Sciences. One such tool is a parallel solver for situational analysis [4]. 

Algorithms and program realization of the conical model of the Earth’s shadow are 

discussed in the present work. Algorithms and program codes suitable for multi-

satellite situational analysis are proposed.  

 
Concept of situation analysis 
 

As pointed out above, situational analysis solves problems related to satellite 

operation optimization according to necessary restrictive conditions. Each 

situational problem 𝑆𝑃 is composed of one or a conjunction of several situational 

conditions 𝑠𝑐𝑖 of different types: 
 

(1)    𝑆𝑃 = 𝑠𝑐1 ∧ 𝑠𝑐2 ∧ …∧ 𝑠𝑐𝑛   
 

The conditions themselves are predicate functions accepting values of one or zero. 

They can be generally represented as: 
 

   𝑠𝑐𝑖 = 𝑠𝑐𝑖({�⃗� }, {𝛼}, {𝛽}, 𝑡) 
 

where {�⃗� } is a set of radius vectors of objects, {𝛼} is a set of parameters of the 

mathematical model describing the situational condition and {𝛽} is a set of 

constraints that are specific to the conditions. The calculation of the 𝑆𝑃 function is 

done by sequentially checking the conditions 𝑠𝑐𝑖. The application of Horner's rule 

allows cancelling the verification of the conditions when an unfulfilled condition 𝑠𝑐𝑙 

is found: 
 

(2)    𝑆𝑃 = (… (… (𝑠𝑐1˄𝑠𝑐2)˄… )˄𝑠𝑐𝑙 …˄𝑠𝑐𝑛−1)˄𝑠𝑐𝑛       
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It is important to keep in mind that each condition 𝑠𝑐𝑖 is satisfied within the 

time interval 𝑇𝑖,𝑘 and is not fulfilled for the next adjacent interval 𝑇𝑖,𝑘
∗ . The only 

requirement to 𝑇𝑖,𝑘 and 𝑇𝑖,𝑘
∗ , which will be taken into account, are 𝑇𝑖,𝑘 , 𝑇𝑖,𝑘

∗ ≫△ 𝑡, 

where △ 𝑡 is a step in simulation time. The index k denotes the serial number of the 

interval within the time horizon. 

  
Parallel solving of situational problems 
 

A simulation of multi-satellite missions with many objects of observation 

requires solving many situational problems. Repeated simulations to optimize 

different parameters also lead to the need for multiple situational analyses. The 

functionality and reliability of multi-satellite systems result from the space 

environment’s impact on the subsystems and the scientific instruments over a long 

time horizon. The computer simulations clarifying changes in the functionality and 

the reliability require computational efficiency of situational analysis. The 

application of parallel calculations is а step in the right direction. 

Advances in computer technologies provide new opportunities for compiling 

even more complex simulation models but also place demands on their development. 

The article comments on solving situational problems in the context of parallel 

calculations (using multiprocessor and multicore systems). This requires special 

approaches and program models in the development of computational algorithms. 

The reasons for applying parallel calculations are the following: 

1. complex mathematical models are used for the calculation of different 

situational conditions when searching for orbital events; 

2. simultaneous solving of many situation problems is included in a simulation 

model; 

3. the simulation time intervals (𝑡𝑏𝑒𝑔𝑖𝑛, 𝑡𝑒𝑛𝑑) are large; 

4. Repeatedly solving of situation model based on situational analysis for space 

mission parameters optimization (concerning satellites, instruments, 

ground-based stations’ and objects of investigations). 

All compiled situational problems can be applied to all members in a multi-

satellite system. The number of situational problems needed to be solved may 

increase according to the number of satellites and objects for observation and 

scientific problems for investigation. 

Different situational conditions based on specific computational models give 

rise to a different number of computational operations. Such models are irregular, 

and an imbalance occurs when the calculations are parallelized. This is due to the 

uneven distribution of computational operations between the available processors. 

In poor distribution, some processors complete their problems and are free, while 

others continue their calculations. The “Pool of threads” model copes with this 

problem [5].  



18 
 

Parallel Situational Analysis Solver 
 

A parallel solver for situational analysis was developed for this purpose. It 

is a processing program that consistently checks the feasibility of the conditions in a 

particular situational problem. The parallelization is based on computational threads 

organized in a variant of the program model "pool of threads" [6]. In this variant, the 

threads are synchronized with each otherwhile receiving situational problems to 

solve (race condition). This excludes the solution of one situational problem by more 

than one thread. The threads are also synchronized with the parent thread, which 

initiates the calculations and waits for them to complete at each simulated time step. 

Each thread takes one or more situational problems for processing according to the 

specified parameter value known as granularity. 

 
Situational problems designer 
 

A dialogue editor of situational problems is developed as an auxiliary tool. 

The compilation of a situational problem is initiated, situational conditions are 

successively selected, and their respective parameters and restrictions are set with 

the help of dialogue controls. An already compiled situational problem can be 

rejected or approved and saved as a template for future use. An optimization method 

can be selected too. One already assembled situational problem can be related to a 

particular satellite or all satellites of the respective multi-satellite system. 

 
Conic Earth shadow model 
 

Models of the earth's shadow have been developed and used for various 

purposes long ago. Ferraz-Mello [6] describes the shadow of the Earth with a 

cylindrical model. Bordovitzina et al. [7] apply a conical model of the Earth's shadow 

with penumbra. Determining the moments of entry and exit from the shadow is 

discussed in [8, 9]. Recently Srivastava has considered models of Earth's shadow 

[10]. Here, we will present detailed considerations of the conic models (also of the 

light zone) due to their use in developing program code for situational analysis 

purposes. 

A geometric model that is used for calculating the parameters of the Earth's 

shadow is shown in Fig. 1. The circles (𝑂𝑠, Rs) and (𝑂𝐸 , RE) represent the Sun and 

the Earth in a plane passing through the line �⃡� and point S where the satellite is 

located, respectively. The radii of the Earth RE and the Sun RS are assumed to be 

known. The radius vector �⃗� 𝑆𝐸(𝑡) of the Sun in a geo-equatorial coordinate system is 

determined based on methods of astrodynamics [11]. The radius vector of the 

satellite 𝑟 𝑠𝑎𝑡(𝑡) is also determined based on numerical or analytical methods [11]. 
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A first case – umbra 

The lines �⃡�1 and �⃡�2 are tangent at the points (TS,1, TS,2) and (TE,1, T𝐄,𝟐) to the 

Sun and the Earth respectively in a plane defined by the vectors �⃗� 𝑆𝐸 and 𝑟 𝑠𝑎𝑡. From 

the similarity of the triangles ∆О𝑆𝑇𝑆,2О𝑯 and ∆О𝐸𝑇𝐸,2О𝐻 a formula can be derived 

for the height of the conical shadow of the Earth: 
 

(3)             𝐻𝐸 =
RE.|�⃗� 𝑆𝐸|

RS−RE
  

 

 
Fig. 1. Sun-Earth’s umbra cone geometry 

 

In this formula, RЕ denotes the Earth’s radius, the distance between the Sun 

and the Earth (the magnitude of the vector �⃗� 𝑆𝐸) varies during the year in the 

interval from 147 099 760 km to 152 104 285 km. The height of the Earth's shadow 

HE can be assumed to be a slowly changing quantity. 

The next step is to determine whether the satellite is in the shadow of the 

Earth. One condition for this is that the sub-satellite point is located in the unlit part 

of the earth's surface. It is equivalent to checking if ∡OHOETE,2 < ∡OHOES: 
 

(4)                  
�⃗� 𝑆𝐸.𝑟 𝑠𝑎𝑡

|�⃗� 𝑆𝐸| .|𝑟 𝑠𝑎𝑡|
>

OETE,2

𝐻𝐸
 , 

 

because it compares the cosines of the indicated angles on both sides of the inequality 

without the use of arccosines.  

To determine whether the satellite is in the shadow of the Earth, it remains 

to compare the segments S′S′′and S′S on the line d⃡, perpendicular to the line o⃡. From 

the similarity of the triangles ∆OHS′S′′and ∆𝑂𝐻𝑇𝐸,2𝑂𝐸 it follows: 
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𝑆′𝑆′′ = RE.
𝐻𝐸 − 𝑂𝐸𝑆′

𝑇𝐸,2𝑂𝐻

= RE.
HE − |𝑟 𝑠𝑎𝑡|. cos (∡𝑂𝐻𝑂𝐸𝑆)

√𝐻𝐸
2 − RE

2

  

 

The length of the line segment 𝑇𝐸,2𝑂𝐻, a leg in the right triangle 

∆𝑂𝐻𝑇𝐸,2𝑂𝐸, is determined based on the length of the Earth's shadow HE and the 

magnitude of the radius of the Earth RE or finally: 

𝑆′𝑆′′ = RE.
𝐻𝐸 − 𝑟𝑠𝑎𝑡 .

�⃗� 𝑆𝐸 . 𝑟 𝑠𝑎𝑡
𝑅𝑆𝐸  . 𝑟𝑠𝑎𝑡

√𝐻𝐸
2 − RE

2

  

or 

(5)                        𝑆′𝑆′′ = RE.
𝐻𝐸−𝑒 𝑆𝐸.𝑟 𝑠𝑎𝑡

√𝐻𝐸
2−RE

2
     

 

where 𝑒 𝑺𝑬 is the unit radius vector of the Sun. 

The length of S′S̅̅ ̅̅  is determined by ∆𝑂𝐸𝑆′𝑆: 

𝑆′𝑆̅̅ ̅̅ = |𝑟 𝑠𝑎𝑡|. 𝑠𝑖𝑛∡𝑆′𝑂𝐸𝑆  
or 

(6)                        S′S̅̅ ̅̅ = rsat. √1 − (
�⃗� 𝑆𝐸.𝑟 𝑠𝑎𝑡

|�⃗� 𝑆𝐸| .|𝑟 𝑠𝑎𝑡|
)
2

    ) 

 

It is important not to forget that determining the length of 𝑆′𝑆′′makes sense 

only if OES
′ < 𝐻𝐸. Otherwise, there is a third case where the satellite is in the so-

called antumbra. 
 

Second case – penumbra 

In like manner, we can determine the conditions where a satellite falls in the 

penumbra of the Earth. The conditions for the penumbra are determined by the 

satellite-Earth configuration, in which the Sun is partially obscured by the Earth, 

viewed from the position of the satellite (Figure 2). The lines �⃡�1
′  and �⃡�2

′  are tangent 

at the points (TS,1
′ , TS,2

′ ) and (TE,1
′ , TE,2

′ ) to the Sun and the Earth respectively in a 

plane defined by the vectors �⃗� 𝑆𝐸 and 𝑟 𝑠𝑎𝑡. From the similarity of the triangles 

∆О𝑆𝑇𝑆,2𝑂𝐻
∗  and ∆О𝐸𝑇𝐸,2𝑂𝐻

∗  it follows: 
 

𝐻𝐸
∗

|R⃗⃗ SE| − HE
∗

= 
RE

RS
 

or 
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(7)                       𝐻𝐸
∗ =

RE.|�⃗� 𝑆𝑍|

Rs+RE
    

 

where 𝐻𝐸
∗  denotes the line segment OH

∗ OE. (𝐻𝐸
∗  is analogous to the height of the 

conical umbra) 

 
Fig. 2. Sun-Earth’s penumbra geometry 

 

The next step, after determining the distance HE
∗ , is to check if a satellite is 

in the Earth's penumbra. The first condition checks whether the satellite is outside 

the penumbra (and shadow) zone. For this, it is sufficient to compare the angles 

∡𝑂𝑆𝑂𝐸𝑇𝐸,1 and ∡𝑂𝑆𝑂𝐸𝑆 (or their cosines). Further calculations make sense if 

∡𝑂𝑆𝑂𝐸𝑇𝐸,1 < ∡𝑂𝑆𝑂𝐸𝑆: 
 

(8)                    −
�⃗� 𝑆𝐸.𝑟 𝑠𝑎𝑡

|�⃗� 𝑆𝐸| .|𝑟 𝑠𝑎𝑡|
>

OETE,1

𝐻𝐸
∗  ,   

 

because it compares the cosines of the indicated angles on both sides of the inequality 

without the use of arccosines. To determine whether the satellite is in the Earth's 

penumbra, it remains to compare the segments 𝑆′𝑆′′′ and 𝑆′𝑆 on line 𝑑, 

perpendicular to the line 𝑜 (Figure 2). From the similarity of the triangles ∆𝑂𝐻
∗ 𝑆′𝑆′′′ 

and ∆𝑂𝐻
∗ 𝑇𝐸,1𝑂𝐸 it follows: 
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(9)                   𝑆′𝑆′′′̅̅ ̅̅ ̅̅ ̅ =
RE

√𝐻𝐸
∗2

−RE
2
. (𝐻𝐸

∗ + r.
�⃗� 𝑆𝐸.𝑟 𝑠𝑎𝑡

|�⃗� 𝑆𝐸| .|𝑟 𝑠𝑎𝑡|
)   

 

For the size of the line segment 𝑆′𝑆̅̅ ̅̅  we have again: 
 

𝑆′𝑆̅̅ ̅̅ = 𝑟𝑠𝑎𝑡 . √1 − (
�⃗� 𝑆𝐸 . 𝑟 𝑠𝑎𝑡

|�⃗� 𝑆𝐸| . |𝑟 𝑠𝑎𝑡|
)

2

  

 

In the penumbra zone, the Sun is partially obscured by the Earth, reducing 

the flow of light reaching the satellite. This reduction depends on the part of the 

solar disk covered by the Earth's disk. At low orbits, the time for satellites to pass 

through the penumbra is short and insignificant compared to the times for passing 

through the sunlit and umbra zones. However, at higher orbits, this time is longer 

and could be important to be considered.  

 
Program realization 
 

A situational problem description model 

A descriptor of situational problems is a one-dimensional array whose 

elements are derived types containing the values of different attributes (parameters 

and constraints as well as results) of the conditions comprised in the problem. The 

first (zero) element of the descriptor contains control information and results about 

the entire situational problem. The following elements contain the values of different 

attributes (parameters and constraints as well as results) of the situational conditions. 

Figure 3 illustrates a general template in Fortran language for the creation of 

situational problem descriptor objects. The descriptors of different situational 

problems are combined into a two-dimensional array with dimensions 𝐾 × 𝑁, where 

N is the number of problems and K is the maximum number of situational conditions 

among all problems. 

- SitCond is a derived type that describes different situational conditions. It 

contains various attributes, which are common for each situational 

condition. Some of them are:sit_code – identification code of situation 

condition 

- sat_num - satellite number to which the condition is associated 

- duration – time interval when the condition is met 

- dt_sit    – local parameter- accumulates duration of condition before ending 

duration 

The UNION statement defines groups of fields that share memory among 

different situational conditions. For the conditions that are discussed here, the 

following map … end map contains three logical variables umbra, penumbra, and 
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sunlit. When the satellite is in a part of the orbit falling in the shadow, penumbra, or 

illuminated zone, the corresponding variable is assigned a value of true. These 

variables have control functions. The UNION statement defines an array of storage. 

The UNION operator specifies an area of memory that is used polymorphically by 

each of the functions computing different situational conditions.  

 

 
 

                Fig. Derived types for situational problems compilation 
 

MODULE  

  type      SitCond 

     integer    sit_code          ! Code of the situation condition; every situation has identification code 

     integer         sat_num     ! Which satellite concern this situational problem 
     logical         flag             ! Satisfaction of situational condition: .false. or .true. 

     logical     begin_sit         ! If is true – the beginning of situational condition satisfaction 

     logical     fl_rezults         ! If .true. - flag for end of situational conditional’s interval  

     real*8              t12(2,3)  ! Determine the last time interval where the condition is satisfied 

     real          duration          ! Duration of a current situational condition (event) 

     real                dt_sit        ! Local parameter- accumulates duration of condition before ending duration 
     real            t_cond_total ! Local parameter- accumulates total durations for the whole time horizon 

   union  
     map …    ! Other situational conditions 
     end  map ! Other situational conditions 

     map                            ! Sit_78/79: satellite in conic shadow 

        real         num_sat_79 
        logical      umbra            ! If       umbra.EQ..true. -  penumbra=.false.,   sunlit=.false. 

        logical   penumbra         ! If penumbra.EQ..true.   -        sunlit=.false., umbra=.false. 

        logical    sunlit                ! If       sunlit.EQ..true. - penumbra=.false.,  umbra=.false. 

     end map 
     map …  

     end  map ! For other situational conditions 

   end union 
  end type  SitCond 

 
  type     sit_problem 

   union 

     map                                   ! Only for solving control- contains the number of situation conditions 
        integer     SP_code        ! Contains the serial number of the situational problem  

        integer     SP_type         ! Contains a unique code of situational problems  

        integer     max_cond      ! The number of situational conditions for the current problem 
        logical     requirement    ! Satisfaction of situational problem: .false. or .true. 

        integer     opt_level        ! Optimization algorithm: 0- none, 1/2/3 

        logical     begin_sit 
        logical     fl_results        ! If .true. - flag for end of situation interval end ready results 

        real*8      t1,t2               ! The last time interval where the situational conditions are satisfied 

        real        duration,dt_sit ! Duration of time interval when all conditions are satisfied 
        real       t_ problem_total       ! Accumulates total durations for the whole simulated period 

        integer     problem_code      ! A code of satellite operation related to the situational problem 

     end map 

     map 

       type (SitCond) sit_cond 

     end map 

   end union 

  end type  sit_ problem 

END MODULE 
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The sit_problem is a derived type that describes different situational 

problems. The UNION statement defines groups of two MAP blocks that describe 

the elements of one situational problem. The first MAP block describes the zero 

element of the situational problem descriptor, which contains control parameters and 

the problem's attributes. The second MAP block allows the inheritance of the 

properties of each of the situational conditions in the situational problem. The 

Situational solver interprets situational condition attributes according to the 

identification code sit_code. Each function corresponding to a given situational 

condition interprets the attributes in a specific way corresponding to a corresponding 

MAP block.  

 

Design of the computer subroutines for the umbra/sunlit situational 

conditions 

Two computer subroutine functions Sit__78 and Sit__79 have been 

developed to check if the satellite is in the shadow or in the sunlight zone respectively 

(Appendix A). The subroutines are realized in the Fortran language. When carrying 

out a situational analysis, which is related to the simulation of multi-satellite systems, 

some tasks refer to observations in the Earth's shadow and others to observations in 

the sunlit zone. Some calculations about the geometry of the shadow are the same 

for all satellites. For this reason, the subroutine named Preliminary_Calculations 

is added to increase computational efficiency. It performs these common calculations 

related to the umbra and light zone, which depend only on the Sun-Earth distance- 

the height of the conical shadow of the Earth HE.(expression (3)), analogous quantity 

HE
∗  and some others. This subroutine, as well as the Sit__78, is an additional entry 

point to the Sit__79 subroutine. The results of the calculations in 

Preliminary_Calculations are contained in static local variables that are available 

within the Sit__79 and Sit__78 subroutines. When these subroutines are used within 

the parallel processor for situational analysis (Atanassov, 2016), these variables are 

common to all computational threads. Some variables (described in operator 

“automatic”) need to be declared as dynamic to be in the local memory for each 

thread. The calculations for different situational tasks are not influenced by each 

other. Besides, the code equal to the two subroutines Sit__79 and Sit__78 is 

differentiated within the internal subroutine If_flag. This subroutine has control 

functions for the situation analysis processor and calculates the values of the 

variables specific for each situational condition stored in a generic structured 

variable SitCond (Appendix A). The approach allows situational conditions’ 

subroutines to be reentrant and protected when multi-thread parallelization is 

applied. If_Flag internal function operates with the dummy arguments of Sit__78 

and Sit__79 functions.  

The main purpose of the subroutines Sit__79 is to check the feasibility of 

the relevant conditions. The first check through operator a1:IF is related to 

inequality (4). This check expresses the necessary condition to seek a satellite in the 
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Earth’s umbra. If the necessary condition is fulfilled, then distances 𝑆′𝑆′′ and 𝑆′𝑆 

according to the expressions (5) and (6) are calculated. Let us recall that when 

calculating 𝑆′𝑆′′, preliminary calculations performed in the subroutine 

Preliminary_Calculations are used. Checking whether the satellite is in the umbra 

is performed in the operator a2:IF. If the satellite is not in the umbra, the operator 

a3:IF checks based on the expressions (6) and (9) whether it is in the penumbra 

(checking with the a1:IF operator doesn't guarantee either shadow or penumbra). 

Subroutine Sit__78 deals with the light zone analogously to Sit__79. The 

quantity HE
∗  (analogous to the height of the Earth’s umbra HE)  is presented by 

expression (7) and calculated in subroutine Preliminary_Calculations as variable 

H_penu. The a5:IF operator checks the necessary condition (8). The operator a6:IF 

checks whether the satellite is in the light zone. The operator a7:IF checks based on 

expressions (5) and (6) whether it is also in the penumbra (regardless of the condition 

(8)) in case it is not in the light zone. 

The determination of the time intervals, when conditions are met, is 

performed by the internal subroutine If-Flag. The interval begins when the value of 

the condition changes from false to true. The end of the interval is taken to be the 

moment when the value of the situational condition changes from true to false. 

 
Conclusion and outlook 
 

Situational conditions related to the models of both, the Earth’s shadow and 

the lit zone are examples of conditions participating in several different situational 

problems. Such situational problems arise from numerous scientific problems and 

involve the use of data from diverse instruments located on satellites, either of one 

or more space missions. The attention is directed to using these models in the frame 

of Situational Analysis Solver in the analysis of multi-satellite space missions. 

Performing an analysis related to solving a large number of situational 

problems, each with several conditions can be time-consuming. Apart from the 

computational models’ optimization of the situational conditions and the application 

of parallel calculations, the search and research for optimization methods of the 

situational analysis are an interesting challenge and necessary continuation of the 

work.  
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Appendix A. Source code of the subroutines checking the situational conditions 
!******************************************************************** 
! Sit__78: conic shadow, checks if the satellite is in the sunlit zone, out of umbra  

! Sit__79: conic shadow, checks if the satellite is in the penumbra  

! Preliminary_Calculations : common for all satellites 
!                               If_Flag  : internal subroutine 

!         Dist_sun   – Sun-Earth distance  

!             H_shad – а height of the conical shadow of the Earth 
!             Re         –  radius of the Earth  

!             Rm_sun–  solar radius  

!                  r_sat – modulus of the radius vector of satellite in GeKS 
!.................................................................................... 

FUNCTION      Sit__79  (t,dt,xv,umbra,penumbra,fl_rezults,duration,begin_sit,dt_sit,t12) 

  USE  DFlib 
     logical           Sit__79,Sit__78,umbra,penumbra,fl_rezults,               begin_sit 

     real                                                                                       duration,                t12*8(2,3) 

     real*8              t,dt,xv(3) 
     real*8              r_sat 

     real*8       Re/6378.D3/,Rm_Sun/695510.D3/ ! [m]  /1.D9/ 

     real*8        S1S2,S1S,SpSss,SpS 
     real*8       H_shad, H_penu, D_shad, D_penu, cos_OhOeTe1, cos_OhOeTe2 

     real*8             rS,rSun(3) 

     common   /cSun_vek/rS,rSun ! Modulus of vector and directional cosines 
     logical          flag 

     automatic    flag,S1S2,S1S3,S1S,SpSss,SpS,cos_OhOeS 

        r_sat       =  SQRT(xv(1)**2 + xv(2)**2 + xv(3)**2) ! |radius - vector| of the satellite - modulus 
    cos_OhOeS= -(xv(1)*rSun(1)    + xv(2)*rSun(2)    + xv(3)*rSun(3)   )/(r_sat) !- from scalar product 

a1:IF(cos_OhOeS.GT.cos_OhOeTe2) THEN ! It makes sense to check for umbra 

      S1S2= D_shad*(H_shad - r_sat*cos_OhOeS  )  

      S1S  = r_sat*SQRT((1.D0 - cos_OhOeS)*(1.D0 + cos_OhOeS)); 

    a2:IF(S1S.LE.S1S2) THEN ! The satellite is in umbra 

                                            flag=.true.; umbra=.true. 
                                       ELSE ! The satellite is in penumbra eventually  

                                            flag=.false.; 

                   S1S3= D_penu*(H_penu + r_sat*cos_OhOeS  )  
          a3:IF(S1S.LT.S1S3) THEN ! Checking for penumbra 

                                                penumbra=.true.;  

                                             ELSE 

                                                penumbra=.false.  

                   ENDIF a3 

             ENDIF a2   
                               ELSE ! No sense to check in the sunlit zone 

                                  flag=.false. 

     ENDIF a1 
       CALL  If_Flag(Sit__79) 

RETURN 

ENTRY                    Sit__78(t,dt,xv,umbra,penumbra,fl_rezults,duration,begin_sit,dt_sit,t12) 
          

        r_sat       =   SQRT(xv(1)**2 + xv(2)**2 + xv(3)**2) ! |radius - vector| of satellite - modulus 

    cos_OhOeS= -(xv(1)*rSun(1)    + xv(2)*rSun(2)    + xv(3)*rSun(3)   )/(r_sat) !- from scalar product 
 

a5:IF(-cos_OhOeS.GT.cos_OhOeTe1) THEN ! The satellite is in sunlit zone 
             flag=.true. 

                               ELSE ! No sense to check about umbra and penumbra 

              S1S3= D_penu*(H_penu + r_sat*cos_OhOeS  )  
              S1S  = r_sat*SQRT((1.D0 - cos_OhOeS)*(1.D0 + cos_OhOeS)) 

    a6:IF(S1S.GE.S1S3) THEN ! Satellite is in sunlit zone!!! 
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                                         flag=.true. 

                                       ELSE ! the satellite is in penumbra eventually 

                                         flag=.false. 
                       S1S2= D_shad*(H_shad - r_sat*cos_OhOeS) 

          a7:IF(S1S.GT.S1S2) THEN ! Checking for penumbra 

                                                   penumbra=.true.;  umbra=.false. ;   flag=.false. 
                                             ELSE ! outside the penumbra  

                                                   penumbra=.false.; umbra=.true.  ;   flag=.false. 

                   ENDIF a7; 
             ENDIF a6   

         ENDIF a5 

           CALL  If_Flag(Sit__78) 

RETURN 

ENTRY         Preliminary_Calculations() 

 

           H_shad= Re*rS/(Rm_Sun  - Re);            cos_OhOeTe2= Re/H_shad 

           H_penu= Re*rS/(Rm_Sun + Re);            cos_OhOeTe1= Re/H_penu 

           D_shad= Re/SQRT((H_shad   - Re)*(H_shad + Re)) 
           D_penu= Re/SQRT((H_penu   - Re)*(H_penu + Re)) 

 RETURN 

CONTAINS 

   SUBROUTINE            If_Flag(Sit_cod) 

      Logical                                    Sit_cod 

   IF(flag) THEN 
                IF(.NOT.begin_sit) THEN ! Beginning of the interval 

                                       begin_sit=.true. 

                                 t12(1,1)= t     ! stores the start time 
                                     dt_sit=.0; fl_rezults=.false. 

                                               ELSE  

                                 t12(2,1)= t     ! stores the final  time 

                    ENDIF 

                           dt_sit= dt_sit + dt; 

                     Sit__cod=.true. ;  
         ELSE ! Satellite isn't visible 

                 IF(begin_sit) THEN      ! the situational interval continues 

                                          duration= dt_sit - dt; fl_rezults=.true. 
                                               dt_sit=.0;              begin_sit=.false. 

                                        ELSE 

                                          duration=.0; 

                     ENDIF 

             Sit_cod=.false. 

       ENDIF 

   END SUBROUTINE  If_Flag 

END FUNCTION  Sit__79 
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КОНИЧЕСКОЙ МОДЕЛИ ТЕНИ ЗЕМЛИ 

 
А. Атанасов 

 
Аннотация 

Поиск оптимальных временных интервалов выполнения операций 

спутников основан на проверке конкретных условий геометрического или 

физического характера. В ситуационной задаче сочетаются несколько 

условий. Для решения различных ситуационных задач необходимо заранее 

разработать программные коды для проверки различных ситуационных 

условий. Представлены два ситуационных условия для определения того, 

находится ли спутник в освещенной солнцем зоне или в тени на основе 

конических моделей земной тени. Вводятся необходимые (но не достаточные) 

условия для нахождения спутника соответственно в тени или освещенной 

солнцем зоне упрощающие расчеты и повышают вычислительную эф-

фективность для большей части орбиты спутника. Задачи с одним или 

несколькими условиями решаются с помощью разработанного параллельного 

решателя для ситуационного анализа. Условия проверки положения спутника 

относительно тени Земли могут сочетаться с другими ситуационными 

условиями.  


