
15

Bulgarian Academy of Sciences. Space Research and Technology Institute.

Aerospace Research in Bulgaria. 36, 2024, Sofia

DOI: https://doi.org/10.3897/arb.v36.e02

DEVELOPING SITUATIONAL CONDITIONS AND PROGRAM CODES

FOR PARALLEL SITUATIONAL ANALYSIS SOLVER BASED

ON CONIC UMBRA/SUNLIT MODELS

Atanas Atanassov

Space Research and Technology Institute – Bulgarian Academy of Sciences

e-mail: At_M_Atanassov@yahoo.com

Keywords: Space mission analysis and design, Situational analysis, Constraints analysis,

Situational problem, Situational conditions; Parallel algorithms

Abstract
The search for optimal time intervals for satellite operations performance is based on

verifying specific conditions of a geometric or physical nature. Several conditions are combined in a

situational problem. To be able to solve different situational problems, it is necessary to develop

program codes for verifying different situational conditions in advance. Two situational conditions for

determining if the satellite is in the sunlit zone or the umbra based on the conical models of the earth's

shadow are presented. Necessary (but not sufficient) conditions are introduced to locate the satellite in

the umbra or the sunlit zone, respectively. These conditions simplify the calculations and increase the

computational efficiency for a large part of the satellite orbit. Problems with one or more conditions

are solved by a developed parallel solver for situational analysis. Conditions checking the position of

a satellite relative to the Earth's shadow can be combined with other situational conditions. A model of

description of situational conditions is shown.

Introduction

Current trends in the development of satellite technologies lead, on the one

hand, to the use of smaller satellites and, on the other hand, to multi-satellite missions

instead of large multi-purpose satellites [1, 2] The process of space missions’

analysis and design is related to the clarification and optimization of many and

different parameters linked to scientific instruments, satellite subsystems, orbital

parameters or templates of multi-satellite systems.

Computer simulations are playing an increasing role at all stages of

preparation and operational implementation of multi-satellite missions. The

application of parallel algorithms and calculations is crucial in solving large-scale

problems involving hundreds and thousands of satellites.

An important part of the space missions’ analysis is the so-called situational

analysis. The situational analysis deals with the determination of optimal time

https://doi.org/10.3897/arb.v36.e02
mailto:At_M_Atanassov@yahoo.com

16

intervals suitable for the execution of satellite operations, depending on various

geometric and physical conditions. This type of analysis is applied to different stages

of mission preparation- starting with the conceptual study and preliminary analysis,

going through mission definition, design and development, and finishing with

implementation. The determination of the initial and final moments of the passage

of a satellite through the shadow of the Earth as well as through the sunlit zone has

wide practical applications. The evaluation of the energy produced by solar panels

and its use in executing various operations is an example of such an application.

These moments are necessary to perform measurements in the Earth's shadow or the

illuminated part of a satellite's orbit.

Wertz and Larson [3] emphasize that mission analysis algorithms must be

simple and effective enough to allow multiple runs, collect statistical data, and

explore various scenarios and design options. Developing effective methods and

computer programs for situational analysis is very important when many problems

need to be solved, each involving more than one situation.

Algorithms and calculation tools for space mission analysis and design are

under development at the Space Research and Technology Institute at the Bulgarian

Academy of Sciences. One such tool is a parallel solver for situational analysis [4].

Algorithms and program realization of the conical model of the Earth’s shadow are

discussed in the present work. Algorithms and program codes suitable for multi-

satellite situational analysis are proposed.

Concept of situation analysis

As pointed out above, situational analysis solves problems related to satellite

operation optimization according to necessary restrictive conditions. Each

situational problem 𝑆𝑃 is composed of one or a conjunction of several situational

conditions 𝑠𝑐𝑖 of different types:

(1) 𝑆𝑃 = 𝑠𝑐1 ∧ 𝑠𝑐2 ∧ …∧ 𝑠𝑐𝑛

The conditions themselves are predicate functions accepting values of one or zero.

They can be generally represented as:

 𝑠𝑐𝑖 = 𝑠𝑐𝑖({�⃗� }, {𝛼}, {𝛽}, 𝑡)

where {�⃗� } is a set of radius vectors of objects, {𝛼} is a set of parameters of the

mathematical model describing the situational condition and {𝛽} is a set of

constraints that are specific to the conditions. The calculation of the 𝑆𝑃 function is

done by sequentially checking the conditions 𝑠𝑐𝑖. The application of Horner's rule

allows cancelling the verification of the conditions when an unfulfilled condition 𝑠𝑐𝑙

is found:

(2) 𝑆𝑃 = (… (… (𝑠𝑐1˄𝑠𝑐2)˄…)˄𝑠𝑐𝑙 …˄𝑠𝑐𝑛−1)˄𝑠𝑐𝑛

17

It is important to keep in mind that each condition 𝑠𝑐𝑖 is satisfied within the

time interval 𝑇𝑖,𝑘 and is not fulfilled for the next adjacent interval 𝑇𝑖,𝑘
∗ . The only

requirement to 𝑇𝑖,𝑘 and 𝑇𝑖,𝑘
∗ , which will be taken into account, are 𝑇𝑖,𝑘 , 𝑇𝑖,𝑘

∗ ≫△ 𝑡,

where △ 𝑡 is a step in simulation time. The index k denotes the serial number of the

interval within the time horizon.

Parallel solving of situational problems

A simulation of multi-satellite missions with many objects of observation

requires solving many situational problems. Repeated simulations to optimize

different parameters also lead to the need for multiple situational analyses. The

functionality and reliability of multi-satellite systems result from the space

environment’s impact on the subsystems and the scientific instruments over a long

time horizon. The computer simulations clarifying changes in the functionality and

the reliability require computational efficiency of situational analysis. The

application of parallel calculations is а step in the right direction.

Advances in computer technologies provide new opportunities for compiling

even more complex simulation models but also place demands on their development.

The article comments on solving situational problems in the context of parallel

calculations (using multiprocessor and multicore systems). This requires special

approaches and program models in the development of computational algorithms.

The reasons for applying parallel calculations are the following:

1. complex mathematical models are used for the calculation of different

situational conditions when searching for orbital events;

2. simultaneous solving of many situation problems is included in a simulation

model;

3. the simulation time intervals (𝑡𝑏𝑒𝑔𝑖𝑛, 𝑡𝑒𝑛𝑑) are large;

4. Repeatedly solving of situation model based on situational analysis for space

mission parameters optimization (concerning satellites, instruments,

ground-based stations’ and objects of investigations).

All compiled situational problems can be applied to all members in a multi-

satellite system. The number of situational problems needed to be solved may

increase according to the number of satellites and objects for observation and

scientific problems for investigation.

Different situational conditions based on specific computational models give

rise to a different number of computational operations. Such models are irregular,

and an imbalance occurs when the calculations are parallelized. This is due to the

uneven distribution of computational operations between the available processors.

In poor distribution, some processors complete their problems and are free, while

others continue their calculations. The “Pool of threads” model copes with this

problem [5].

18

Parallel Situational Analysis Solver

A parallel solver for situational analysis was developed for this purpose. It

is a processing program that consistently checks the feasibility of the conditions in a

particular situational problem. The parallelization is based on computational threads

organized in a variant of the program model "pool of threads" [6]. In this variant, the

threads are synchronized with each otherwhile receiving situational problems to

solve (race condition). This excludes the solution of one situational problem by more

than one thread. The threads are also synchronized with the parent thread, which

initiates the calculations and waits for them to complete at each simulated time step.

Each thread takes one or more situational problems for processing according to the

specified parameter value known as granularity.

Situational problems designer

A dialogue editor of situational problems is developed as an auxiliary tool.

The compilation of a situational problem is initiated, situational conditions are

successively selected, and their respective parameters and restrictions are set with

the help of dialogue controls. An already compiled situational problem can be

rejected or approved and saved as a template for future use. An optimization method

can be selected too. One already assembled situational problem can be related to a

particular satellite or all satellites of the respective multi-satellite system.

Conic Earth shadow model

Models of the earth's shadow have been developed and used for various

purposes long ago. Ferraz-Mello [6] describes the shadow of the Earth with a

cylindrical model. Bordovitzina et al. [7] apply a conical model of the Earth's shadow

with penumbra. Determining the moments of entry and exit from the shadow is

discussed in [8, 9]. Recently Srivastava has considered models of Earth's shadow

[10]. Here, we will present detailed considerations of the conic models (also of the

light zone) due to their use in developing program code for situational analysis

purposes.

A geometric model that is used for calculating the parameters of the Earth's

shadow is shown in Fig. 1. The circles (𝑂𝑠, Rs) and (𝑂𝐸 , RE) represent the Sun and

the Earth in a plane passing through the line �⃡� and point S where the satellite is

located, respectively. The radii of the Earth RE and the Sun RS are assumed to be

known. The radius vector �⃗� 𝑆𝐸(𝑡) of the Sun in a geo-equatorial coordinate system is

determined based on methods of astrodynamics [11]. The radius vector of the

satellite 𝑟 𝑠𝑎𝑡(𝑡) is also determined based on numerical or analytical methods [11].

19

A first case – umbra

The lines �⃡�1 and �⃡�2 are tangent at the points (TS,1, TS,2) and (TE,1, T𝐄,𝟐) to the

Sun and the Earth respectively in a plane defined by the vectors �⃗� 𝑆𝐸 and 𝑟 𝑠𝑎𝑡. From

the similarity of the triangles ∆О𝑆𝑇𝑆,2О𝑯 and ∆О𝐸𝑇𝐸,2О𝐻 a formula can be derived

for the height of the conical shadow of the Earth:

(3) 𝐻𝐸 =
RE.|�⃗� 𝑆𝐸|

RS−RE

Fig. 1. Sun-Earth’s umbra cone geometry

In this formula, RЕ denotes the Earth’s radius, the distance between the Sun

and the Earth (the magnitude of the vector �⃗� 𝑆𝐸) varies during the year in the

interval from 147 099 760 km to 152 104 285 km. The height of the Earth's shadow

HE can be assumed to be a slowly changing quantity.

The next step is to determine whether the satellite is in the shadow of the

Earth. One condition for this is that the sub-satellite point is located in the unlit part

of the earth's surface. It is equivalent to checking if ∡OHOETE,2 < ∡OHOES:

(4)
�⃗� 𝑆𝐸.𝑟 𝑠𝑎𝑡

|�⃗� 𝑆𝐸| .|𝑟 𝑠𝑎𝑡|
>

OETE,2

𝐻𝐸
 ,

because it compares the cosines of the indicated angles on both sides of the inequality

without the use of arccosines.

To determine whether the satellite is in the shadow of the Earth, it remains

to compare the segments S′S′′and S′S on the line d⃡, perpendicular to the line o⃡. From

the similarity of the triangles ∆OHS′S′′and ∆𝑂𝐻𝑇𝐸,2𝑂𝐸 it follows:

O
E
 O

H

T
E, 1

T
S, 1

�⃡�1

�⃗� 𝑆𝐸
H

E

Rs

�⃡�2

𝑆 𝑟 𝑠𝑎𝑡

𝑑

T
E, 2

T
S, 2

𝑜

𝑆′′

sunlight
O

S
 𝑅𝐸 𝑆′

20

𝑆′𝑆′′ = RE.
𝐻𝐸 − 𝑂𝐸𝑆′

𝑇𝐸,2𝑂𝐻

= RE.
HE − |𝑟 𝑠𝑎𝑡|. cos (∡𝑂𝐻𝑂𝐸𝑆)

√𝐻𝐸
2 − RE

2

The length of the line segment 𝑇𝐸,2𝑂𝐻, a leg in the right triangle

∆𝑂𝐻𝑇𝐸,2𝑂𝐸, is determined based on the length of the Earth's shadow HE and the

magnitude of the radius of the Earth RE or finally:

𝑆′𝑆′′ = RE.
𝐻𝐸 − 𝑟𝑠𝑎𝑡 .

�⃗� 𝑆𝐸 . 𝑟 𝑠𝑎𝑡
𝑅𝑆𝐸 . 𝑟𝑠𝑎𝑡

√𝐻𝐸
2 − RE

2

or

(5) 𝑆′𝑆′′ = RE.
𝐻𝐸−𝑒 𝑆𝐸.𝑟 𝑠𝑎𝑡

√𝐻𝐸
2−RE

2

where 𝑒 𝑺𝑬 is the unit radius vector of the Sun.

The length of S′S̅̅ ̅̅ is determined by ∆𝑂𝐸𝑆′𝑆:

𝑆′𝑆̅̅ ̅̅ = |𝑟 𝑠𝑎𝑡|. 𝑠𝑖𝑛∡𝑆′𝑂𝐸𝑆
or

(6) S′S̅̅ ̅̅ = rsat. √1 − (
�⃗� 𝑆𝐸.𝑟 𝑠𝑎𝑡

|�⃗� 𝑆𝐸| .|𝑟 𝑠𝑎𝑡|
)
2

)

It is important not to forget that determining the length of 𝑆′𝑆′′makes sense

only if OES
′ < 𝐻𝐸. Otherwise, there is a third case where the satellite is in the so-

called antumbra.

Second case – penumbra

In like manner, we can determine the conditions where a satellite falls in the

penumbra of the Earth. The conditions for the penumbra are determined by the

satellite-Earth configuration, in which the Sun is partially obscured by the Earth,

viewed from the position of the satellite (Figure 2). The lines �⃡�1
′ and �⃡�2

′ are tangent

at the points (TS,1
′ , TS,2

′) and (TE,1
′ , TE,2

′) to the Sun and the Earth respectively in a

plane defined by the vectors �⃗� 𝑆𝐸 and 𝑟 𝑠𝑎𝑡. From the similarity of the triangles

∆О𝑆𝑇𝑆,2𝑂𝐻
∗ and ∆О𝐸𝑇𝐸,2𝑂𝐻

∗ it follows:

𝐻𝐸
∗

|R⃗⃗ SE| − HE
∗

=
RE

RS

or

21

(7) 𝐻𝐸
∗ =

RE.|�⃗� 𝑆𝑍|

Rs+RE

where 𝐻𝐸
∗ denotes the line segment OH

∗ OE. (𝐻𝐸
∗ is analogous to the height of the

conical umbra)

Fig. 2. Sun-Earth’s penumbra geometry

The next step, after determining the distance HE
∗ , is to check if a satellite is

in the Earth's penumbra. The first condition checks whether the satellite is outside

the penumbra (and shadow) zone. For this, it is sufficient to compare the angles

∡𝑂𝑆𝑂𝐸𝑇𝐸,1 and ∡𝑂𝑆𝑂𝐸𝑆 (or their cosines). Further calculations make sense if

∡𝑂𝑆𝑂𝐸𝑇𝐸,1 < ∡𝑂𝑆𝑂𝐸𝑆:

(8) −
�⃗� 𝑆𝐸.𝑟 𝑠𝑎𝑡

|�⃗� 𝑆𝐸| .|𝑟 𝑠𝑎𝑡|
>

OETE,1

𝐻𝐸
∗ ,

because it compares the cosines of the indicated angles on both sides of the inequality

without the use of arccosines. To determine whether the satellite is in the Earth's

penumbra, it remains to compare the segments 𝑆′𝑆′′′ and 𝑆′𝑆 on line 𝑑,

perpendicular to the line 𝑜 (Figure 2). From the similarity of the triangles ∆𝑂𝐻
∗ 𝑆′𝑆′′′

and ∆𝑂𝐻
∗ 𝑇𝐸,1𝑂𝐸 it follows:

O
E

TE,2
′

𝑇𝑆,1
′

�⃗� 𝑆𝐸
H

E

Rs

𝑡2
′

𝑆

𝑟 𝑠𝑎𝑡

𝑑

TE,1
′

𝑇𝑆,2
′

𝑆′

𝑆′′′

sunlight

𝑂𝐻
∗ Х

𝑟 𝑆𝑠𝑎𝑡

𝑅𝐸 O
S

𝑟 𝑠𝑎𝑡
∗

�⃡�

�⃡�1

22

(9) 𝑆′𝑆′′′̅̅ ̅̅ ̅̅ ̅ =
RE

√𝐻𝐸
∗2

−RE
2
. (𝐻𝐸

∗ + r.
�⃗� 𝑆𝐸.𝑟 𝑠𝑎𝑡

|�⃗� 𝑆𝐸| .|𝑟 𝑠𝑎𝑡|
)

For the size of the line segment 𝑆′𝑆̅̅ ̅̅ we have again:

𝑆′𝑆̅̅ ̅̅ = 𝑟𝑠𝑎𝑡 . √1 − (
�⃗� 𝑆𝐸 . 𝑟 𝑠𝑎𝑡

|�⃗� 𝑆𝐸| . |𝑟 𝑠𝑎𝑡|
)

2

In the penumbra zone, the Sun is partially obscured by the Earth, reducing

the flow of light reaching the satellite. This reduction depends on the part of the

solar disk covered by the Earth's disk. At low orbits, the time for satellites to pass

through the penumbra is short and insignificant compared to the times for passing

through the sunlit and umbra zones. However, at higher orbits, this time is longer

and could be important to be considered.

Program realization

A situational problem description model

A descriptor of situational problems is a one-dimensional array whose

elements are derived types containing the values of different attributes (parameters

and constraints as well as results) of the conditions comprised in the problem. The

first (zero) element of the descriptor contains control information and results about

the entire situational problem. The following elements contain the values of different

attributes (parameters and constraints as well as results) of the situational conditions.

Figure 3 illustrates a general template in Fortran language for the creation of

situational problem descriptor objects. The descriptors of different situational

problems are combined into a two-dimensional array with dimensions 𝐾 × 𝑁, where

N is the number of problems and K is the maximum number of situational conditions

among all problems.

- SitCond is a derived type that describes different situational conditions. It

contains various attributes, which are common for each situational

condition. Some of them are:sit_code – identification code of situation

condition

- sat_num - satellite number to which the condition is associated

- duration – time interval when the condition is met

- dt_sit – local parameter- accumulates duration of condition before ending

duration

The UNION statement defines groups of fields that share memory among

different situational conditions. For the conditions that are discussed here, the

following map … end map contains three logical variables umbra, penumbra, and

23

sunlit. When the satellite is in a part of the orbit falling in the shadow, penumbra, or

illuminated zone, the corresponding variable is assigned a value of true. These

variables have control functions. The UNION statement defines an array of storage.

The UNION operator specifies an area of memory that is used polymorphically by

each of the functions computing different situational conditions.

 Fig. Derived types for situational problems compilation

MODULE

 type SitCond

 integer sit_code ! Code of the situation condition; every situation has identification code

 integer sat_num ! Which satellite concern this situational problem
 logical flag ! Satisfaction of situational condition: .false. or .true.

 logical begin_sit ! If is true – the beginning of situational condition satisfaction

 logical fl_rezults ! If .true. - flag for end of situational conditional’s interval

 real*8 t12(2,3) ! Determine the last time interval where the condition is satisfied

 real duration ! Duration of a current situational condition (event)

 real dt_sit ! Local parameter- accumulates duration of condition before ending duration
 real t_cond_total ! Local parameter- accumulates total durations for the whole time horizon

 union
 map … ! Other situational conditions
 end map ! Other situational conditions

 map ! Sit_78/79: satellite in conic shadow

 real num_sat_79
 logical umbra ! If umbra.EQ..true. - penumbra=.false., sunlit=.false.

 logical penumbra ! If penumbra.EQ..true. - sunlit=.false., umbra=.false.

 logical sunlit ! If sunlit.EQ..true. - penumbra=.false., umbra=.false.

 end map
 map …

 end map ! For other situational conditions

 end union
 end type SitCond

 type sit_problem

 union

 map ! Only for solving control- contains the number of situation conditions
 integer SP_code ! Contains the serial number of the situational problem

 integer SP_type ! Contains a unique code of situational problems

 integer max_cond ! The number of situational conditions for the current problem
 logical requirement ! Satisfaction of situational problem: .false. or .true.

 integer opt_level ! Optimization algorithm: 0- none, 1/2/3

 logical begin_sit
 logical fl_results ! If .true. - flag for end of situation interval end ready results

 real*8 t1,t2 ! The last time interval where the situational conditions are satisfied

 real duration,dt_sit ! Duration of time interval when all conditions are satisfied
 real t_ problem_total ! Accumulates total durations for the whole simulated period

 integer problem_code ! A code of satellite operation related to the situational problem

 end map

 map

 type (SitCond) sit_cond

 end map

 end union

 end type sit_ problem

END MODULE

24

The sit_problem is a derived type that describes different situational

problems. The UNION statement defines groups of two MAP blocks that describe

the elements of one situational problem. The first MAP block describes the zero

element of the situational problem descriptor, which contains control parameters and

the problem's attributes. The second MAP block allows the inheritance of the

properties of each of the situational conditions in the situational problem. The

Situational solver interprets situational condition attributes according to the

identification code sit_code. Each function corresponding to a given situational

condition interprets the attributes in a specific way corresponding to a corresponding

MAP block.

Design of the computer subroutines for the umbra/sunlit situational

conditions

Two computer subroutine functions Sit__78 and Sit__79 have been

developed to check if the satellite is in the shadow or in the sunlight zone respectively

(Appendix A). The subroutines are realized in the Fortran language. When carrying

out a situational analysis, which is related to the simulation of multi-satellite systems,

some tasks refer to observations in the Earth's shadow and others to observations in

the sunlit zone. Some calculations about the geometry of the shadow are the same

for all satellites. For this reason, the subroutine named Preliminary_Calculations

is added to increase computational efficiency. It performs these common calculations

related to the umbra and light zone, which depend only on the Sun-Earth distance-

the height of the conical shadow of the Earth HE.(expression (3)), analogous quantity

HE
∗ and some others. This subroutine, as well as the Sit__78, is an additional entry

point to the Sit__79 subroutine. The results of the calculations in

Preliminary_Calculations are contained in static local variables that are available

within the Sit__79 and Sit__78 subroutines. When these subroutines are used within

the parallel processor for situational analysis (Atanassov, 2016), these variables are

common to all computational threads. Some variables (described in operator

“automatic”) need to be declared as dynamic to be in the local memory for each

thread. The calculations for different situational tasks are not influenced by each

other. Besides, the code equal to the two subroutines Sit__79 and Sit__78 is

differentiated within the internal subroutine If_flag. This subroutine has control

functions for the situation analysis processor and calculates the values of the

variables specific for each situational condition stored in a generic structured

variable SitCond (Appendix A). The approach allows situational conditions’

subroutines to be reentrant and protected when multi-thread parallelization is

applied. If_Flag internal function operates with the dummy arguments of Sit__78

and Sit__79 functions.

The main purpose of the subroutines Sit__79 is to check the feasibility of

the relevant conditions. The first check through operator a1:IF is related to

inequality (4). This check expresses the necessary condition to seek a satellite in the

25

Earth’s umbra. If the necessary condition is fulfilled, then distances 𝑆′𝑆′′ and 𝑆′𝑆

according to the expressions (5) and (6) are calculated. Let us recall that when

calculating 𝑆′𝑆′′, preliminary calculations performed in the subroutine

Preliminary_Calculations are used. Checking whether the satellite is in the umbra

is performed in the operator a2:IF. If the satellite is not in the umbra, the operator

a3:IF checks based on the expressions (6) and (9) whether it is in the penumbra

(checking with the a1:IF operator doesn't guarantee either shadow or penumbra).

Subroutine Sit__78 deals with the light zone analogously to Sit__79. The

quantity HE
∗ (analogous to the height of the Earth’s umbra HE) is presented by

expression (7) and calculated in subroutine Preliminary_Calculations as variable

H_penu. The a5:IF operator checks the necessary condition (8). The operator a6:IF

checks whether the satellite is in the light zone. The operator a7:IF checks based on

expressions (5) and (6) whether it is also in the penumbra (regardless of the condition

(8)) in case it is not in the light zone.

The determination of the time intervals, when conditions are met, is

performed by the internal subroutine If-Flag. The interval begins when the value of

the condition changes from false to true. The end of the interval is taken to be the

moment when the value of the situational condition changes from true to false.

Conclusion and outlook

Situational conditions related to the models of both, the Earth’s shadow and

the lit zone are examples of conditions participating in several different situational

problems. Such situational problems arise from numerous scientific problems and

involve the use of data from diverse instruments located on satellites, either of one

or more space missions. The attention is directed to using these models in the frame

of Situational Analysis Solver in the analysis of multi-satellite space missions.

Performing an analysis related to solving a large number of situational

problems, each with several conditions can be time-consuming. Apart from the

computational models’ optimization of the situational conditions and the application

of parallel calculations, the search and research for optimization methods of the

situational analysis are an interesting challenge and necessary continuation of the

work.

Acknowledgment

The author would like to thank Ms. R. Dimitrova for the technical support

in preparing the article.

26

Appendix A. Source code of the subroutines checking the situational conditions
!**
! Sit__78: conic shadow, checks if the satellite is in the sunlit zone, out of umbra

! Sit__79: conic shadow, checks if the satellite is in the penumbra

! Preliminary_Calculations : common for all satellites
! If_Flag : internal subroutine

! Dist_sun – Sun-Earth distance

! H_shad – а height of the conical shadow of the Earth
! Re – radius of the Earth

! Rm_sun– solar radius

! r_sat – modulus of the radius vector of satellite in GeKS
!..

FUNCTION Sit__79 (t,dt,xv,umbra,penumbra,fl_rezults,duration,begin_sit,dt_sit,t12)

 USE DFlib
 logical Sit__79,Sit__78,umbra,penumbra,fl_rezults, begin_sit

 real duration, t12*8(2,3)

 real*8 t,dt,xv(3)
 real*8 r_sat

 real*8 Re/6378.D3/,Rm_Sun/695510.D3/ ! [m] /1.D9/

 real*8 S1S2,S1S,SpSss,SpS
 real*8 H_shad, H_penu, D_shad, D_penu, cos_OhOeTe1, cos_OhOeTe2

 real*8 rS,rSun(3)

 common /cSun_vek/rS,rSun ! Modulus of vector and directional cosines
 logical flag

 automatic flag,S1S2,S1S3,S1S,SpSss,SpS,cos_OhOeS

 r_sat = SQRT(xv(1)**2 + xv(2)**2 + xv(3)**2) ! |radius - vector| of the satellite - modulus
 cos_OhOeS= -(xv(1)*rSun(1) + xv(2)*rSun(2) + xv(3)*rSun(3))/(r_sat) !- from scalar product

a1:IF(cos_OhOeS.GT.cos_OhOeTe2) THEN ! It makes sense to check for umbra

 S1S2= D_shad*(H_shad - r_sat*cos_OhOeS)

 S1S = r_sat*SQRT((1.D0 - cos_OhOeS)*(1.D0 + cos_OhOeS));

 a2:IF(S1S.LE.S1S2) THEN ! The satellite is in umbra

 flag=.true.; umbra=.true.
 ELSE ! The satellite is in penumbra eventually

 flag=.false.;

 S1S3= D_penu*(H_penu + r_sat*cos_OhOeS)
 a3:IF(S1S.LT.S1S3) THEN ! Checking for penumbra

 penumbra=.true.;

 ELSE

 penumbra=.false.

 ENDIF a3

 ENDIF a2
 ELSE ! No sense to check in the sunlit zone

 flag=.false.

 ENDIF a1
 CALL If_Flag(Sit__79)

RETURN

ENTRY Sit__78(t,dt,xv,umbra,penumbra,fl_rezults,duration,begin_sit,dt_sit,t12)

 r_sat = SQRT(xv(1)**2 + xv(2)**2 + xv(3)**2) ! |radius - vector| of satellite - modulus

 cos_OhOeS= -(xv(1)*rSun(1) + xv(2)*rSun(2) + xv(3)*rSun(3))/(r_sat) !- from scalar product

a5:IF(-cos_OhOeS.GT.cos_OhOeTe1) THEN ! The satellite is in sunlit zone
 flag=.true.

 ELSE ! No sense to check about umbra and penumbra

 S1S3= D_penu*(H_penu + r_sat*cos_OhOeS)
 S1S = r_sat*SQRT((1.D0 - cos_OhOeS)*(1.D0 + cos_OhOeS))

 a6:IF(S1S.GE.S1S3) THEN ! Satellite is in sunlit zone!!!

27

 flag=.true.

 ELSE ! the satellite is in penumbra eventually

 flag=.false.
 S1S2= D_shad*(H_shad - r_sat*cos_OhOeS)

 a7:IF(S1S.GT.S1S2) THEN ! Checking for penumbra

 penumbra=.true.; umbra=.false. ; flag=.false.
 ELSE ! outside the penumbra

 penumbra=.false.; umbra=.true. ; flag=.false.

 ENDIF a7;
 ENDIF a6

 ENDIF a5

 CALL If_Flag(Sit__78)

RETURN

ENTRY Preliminary_Calculations()

 H_shad= Re*rS/(Rm_Sun - Re); cos_OhOeTe2= Re/H_shad

 H_penu= Re*rS/(Rm_Sun + Re); cos_OhOeTe1= Re/H_penu

 D_shad= Re/SQRT((H_shad - Re)*(H_shad + Re))
 D_penu= Re/SQRT((H_penu - Re)*(H_penu + Re))

 RETURN

CONTAINS

 SUBROUTINE If_Flag(Sit_cod)

 Logical Sit_cod

 IF(flag) THEN
 IF(.NOT.begin_sit) THEN ! Beginning of the interval

 begin_sit=.true.

 t12(1,1)= t ! stores the start time
 dt_sit=.0; fl_rezults=.false.

 ELSE

 t12(2,1)= t ! stores the final time

 ENDIF

 dt_sit= dt_sit + dt;

 Sit__cod=.true. ;
 ELSE ! Satellite isn't visible

 IF(begin_sit) THEN ! the situational interval continues

 duration= dt_sit - dt; fl_rezults=.true.
 dt_sit=.0; begin_sit=.false.

 ELSE

 duration=.0;

 ENDIF

 Sit_cod=.false.

 ENDIF

 END SUBROUTINE If_Flag

END FUNCTION Sit__79

References

 1. Poghosyan, A., Lluch, I., Matevosyan, H., Lamb, A., Moreno, C. A., et al. Unified

classification for distributed satellite systems. In 4th International Federated and

Fractionated Satellite Systems Workshop, 10-11 oct, Rome, Italy, 2016.

 2. Selva, D., A., Golkar, O. Korobova, I. L. I. Cruz, P. Collopy, O.L. de Weck Distributed

earth satellite systems: What is needed to move forward?. Journal of Aerospace

Information Systems, 2017, 14(8), pp. 412–438.

 3. Wertz, J. R., W. J. Larson Space Mission Analysis and Design. Microcosm Press, Kluwer

Academic Publishers, third ed. 1999, 892 p.

28

 4. Atanassov, A.M. (2016) Parallel satellite orbital situational problems solver for space

missions design and control, Advances in Space Research, v. 58, 9, 2016, pp. 1819–1826.

 5. Rauber, T., Rünger G. Parallel Programming: For Multicore and Cluster Systems.

Springer. 2010, 455 p; DOI 10.1007/978-3-642-04818-0

 6. Ferraz-Mello, S. Sur le problém de la pression de radiation dans la théorie des Satellites

Artificiels. C.R.Acad. Sc. Paris, 1965, 258, p. 463.

 7. Bordovitzina, T. V., Bykova, L. E., Kardash, A. V., Fedyaev, Yu. A., Sharkovskii,

N. A.,. Efficient algorithms for numerical simulation of the motion of earth satellites,

Russian Physics Journal, 1992, Vol. 35, № 8, pp. 735–742.

 8. Eremenko, R. P. Tochnoe reshenie uravneniya teni. Bjul. Instituta teoreticheskoi

astronomii, 1965, 6 (119), p. 446. (rus.)

 9. Neta, B., D. Vallado On Satellite Umbra/Penumbra Entry and Exit Positions, Journal of

the Astronautical Sciences, 1998, 46, No. 1, pp. 91–104.

10. Srivastava, V. K., Pitchaimani, M., & Chandrasekhar, B. S.,. Eclipse prediction methods

for LEO satellites with cylindrical and cone geometries: a comparative study of ECSM

and ESCM to IRS satellites. Astronomy and Computing, 2013, 2, 11–17.

11. Vallado, D. A., Fundamentals of Astrodynamics and Applications. Microcosm Press,

fourth edition, 2013, 1108 p.

РАЗРАБОТКА СИТУАЦИОННЫХ УСЛОВИЙ И ПОДПРОГРАММ

ДЛЯ ПАРАЛЛЕЛЬНОГО ВЫЧИСЛИТЕЛЬНОГО ИНСТРУМЕНТА

СИТУАЦИОННОГО АНАЛИЗА С ИСПОЛЬЗОВАНИЕМ

КОНИЧЕСКОЙ МОДЕЛИ ТЕНИ ЗЕМЛИ

А. Атанасов

Аннотация

Поиск оптимальных временных интервалов выполнения операций

спутников основан на проверке конкретных условий геометрического или

физического характера. В ситуационной задаче сочетаются несколько

условий. Для решения различных ситуационных задач необходимо заранее

разработать программные коды для проверки различных ситуационных

условий. Представлены два ситуационных условия для определения того,

находится ли спутник в освещенной солнцем зоне или в тени на основе

конических моделей земной тени. Вводятся необходимые (но не достаточные)

условия для нахождения спутника соответственно в тени или освещенной

солнцем зоне упрощающие расчеты и повышают вычислительную эф-

фективность для большей части орбиты спутника. Задачи с одним или

несколькими условиями решаются с помощью разработанного параллельного

решателя для ситуационного анализа. Условия проверки положения спутника

относительно тени Земли могут сочетаться с другими ситуационными

условиями.

